# coding = utf8 import matplotlib.pyplot as plt import numpy as np import scipy as sci nb=200 xdata = np.linspace(0,25,nb) # [-1;1] échantilloné sur 50 valeurs noise = np.array(np.random.uniform(-1,1,nb)) # 50 valeurs au hasard entre -2 et 2 errs = np.array(np.random.uniform(-1,1,nb)) ydata = 15*np.sin(xdata)*np.exp(-xdata/10) fig,ax = plt.subplots() ax.set_title('Mesure d\'une oscillation amortie') ax.set_xlabel(' time [s]',loc='left') ax.set_ylabel(r'$l_0=15.sin(t).e^{\frac{-t}{10}}$ [cm]') ax.set_axisbelow(True) ax.yaxis.grid(color='gray') ax.plot(xdata, ydata+noise, marker='o', label='points d\'échantillonage') ax.errorbar(xdata, ydata+noise, yerr=errs,fmt='none',ecolor='red',capsize=2) ax.legend(loc='upper right') ax.spines['bottom'].set_position(('data',0)) ax.spines['top'].set_color('none') ax.spines['right'].set_color('none') plt.show()